Bring Torreya taxifolia North—Now

by Connie Barlow and Paul S. Martin

Conservationists Should Not Move Torreya taxifolia

by Mark Schwartz

In 1988, I began a long-term study of the Florida torreya (Torreya taxifolia). I have followed natural populations across their distribution for more than 15 years and have, from the start, been focused on conservation efforts for this critically endangered coniferous tree. Rob Nicholson and I collected the material from approximately 150 trees that now constitute our *ex situ* plant material. My research has been focused on determining whether there is genetic differentiation across the distribution, understanding the magnitude of the population decline, understanding disease factors, and predicting the likelihood that the species will recover. During this period, there have been occasional efforts to transplant the species northward on behalf of conservation. One justification for northward introduction may be that the population has suffered from disease within its current distribution and thus a northward movement may allow it to escape its pathogens. This justification is somewhat weak as current individuals do not appear to be overly susceptible to any particular disease, although the population is not recovering from a previous decline. Further, since the disease agent responsible for the original decline is a matter of conjecture, it is not clear what Florida torreya would be escaping from, nor where it should go. In short, I am skeptical of the disease escape arguments as we are, at present, unclear of the cul-

TORREYA TAXIFOLIA (often referred to as T. tax or Florida torreya) is an evergreen conifer tree historically found only along a short stretch of the Apalachicola River of northern Florida and the adjacent sliver of southern Georgia. It favors the cool and shady ravines that dissect the high bluffs of the river’s east shore. Despite its current extreme endemism, the species was once a prominent mid- and under-story member of its forest community, which includes an odd mix of northern and southern species: towering beech and hickory next to tall evergreen magnolia, and surrounded by stubby needle palm.

In the 1950s, the species suffered a catastrophic decline, the ultimate cause of which is still unexplained. By the mid-1960s, no large adult specimens—which once measured more than a meter in circumference and perhaps 20 meters tall—remained in the wild, felled by what seemed to be a variety of fungal pathogens. Today, the wild population persists as mere stump sprouts, cyclically dying back at the sapling stage, such that seeds are rarely, if ever, produced. T. tax thus joins American chestnut in maintaining only a juvenile and diminishing presence in its current range.

A 1997 Nature Conservancy pamphlet introduces Torreya taxifolia as “the world’s most endangered conifer.” It is no surprise that the Florida chapter of the Nature Conservancy, the State of Florida through Torreya State Park, a number of botanical gardens, and dispersed academic researchers are all actively involved in trying to restore this tree—guided by a U.S. Fish and Wildlife Service recovery plan pursuant to the Endangered Species Act.

Some, like Mark Schwartz and others, maintain hope for recovering T. tax in reproducing, self-maintaining populations in its current range. Since 1997, staff at the Atlanta Botanical Garden have been experimentally taking healthy T. tax grown from seed at the garden and planting these trees at the periphery of the existing range and somewhat further north in Georgia. The efficacy of applying fungicides and supplemental fertilizers to these transplants is now also being tested. The transplants are all progeny of “ported orchards” established from cuttings taken from wild specimens in Florida in November 1989.

Another Torreya expert, Rob Nicholson, conservatory manager at the Botanic Garden of Smith College in Northampton, Massachusetts, participated in the 1989 salvage of wild genotypes and their propagation as clonal stock. Nicholson presents a less hopeful view of resurrecting a healthy and self-maintaining population of T. tax in its current range. He writes:

Mature trees in cultivation outside of Florida may number less than two dozen. At the beginning of the twentieth century, there were wild populations of Torreya taxifolia estimated at about 300,000 to 500,000. The estimated number of plants in the original habitat is about 50%, which means that 99.3 to 99.6% of the population found at the beginning of the 1980s has died. Where 60-foot trees were formerly found, few individuals over 10 feet are now known. Although research into the cause of this decline is ongoing, in situ preservation appears problematic, and management efforts now include the propagation of rooted cuttings from documented wild stands to be grown in *ex situ* populations.
Bring *Torreya taxifolia* North—Now

Many botanists and climate specialists agree that at some point in the future, human-induced global warming will push many plants to the edge of viability; at that time, “assisted migration” (a term coined by Brian Keel, 2005) may be the only way to save extinction. We believe T. tax is already at that juncture. In a 1990 article, Rob Nicholson speculated, “Is *Torreya* an early victim of global warming and a precursor of a new wave of inexplicable extinctions?” We ask: Why wait until a hundred species are on the brink? Rather, let us undertake assisted migration for *Torreya taxifolia* today, in part, as a trial run for the decades to come. With Florida torreya we can explore the ecological and social dimensions of what seems likely to be a radically new era for plant conservation.

Moving endangered plants: Easy, legal, and cheap

Assisted migration as a conservation tool is both fascinating and frightening for anyone focused on plants. It is fascinating because endangered plants can be planted by whoever so chooses, with no governmental oversight or prohibitions—provided that private seed stock is available and that one or more private landowners volunteer suitable acreage toward this end. This cheap-and-easy route for helping imperiled plants is in stark contrast to the high-profile, high-cost, and governmentally complicated range recovery programs ongoing for highly visible animals, such as the gray wolf, lynx, and California condor.

Assisted migration frightens precisely the same reasons it fascinates: anybody can do it, for good or ill, and with care or abandon. Its promotion could undermine decades of public education about the dangers of non-native plants, as well as more recent efforts to promote the concept of wildlands corridors and connectivity. Still, in an age of deforestation, severe habitat fragmentation, and rapid global warming, assisted migration as a plant conservation tool should not be ignored. As Peter Wharton, curator of the Asian Garden of the University of British Columbia Botanical Garden, writes, “The *Torreya* question is a door to immense issues relating to how we facilitate global ‘flora-forming’ of vegetational zones in a warming world. It is another layer of responsibility for those of us who have a passion for forests and wish to promote the ecologically sensitive reforestation of so many degraded forest ecosystems worldwide.”

We are proposing test plantings of T. tax, using privately owned seed stock, onto forested private lands of the south-central Appalachians and Cumberland Plateau. Mark Schwartz and others who know the tree through years of professional engagement agree that it is very unlikely to become noxious in recipient ecosystems to the north. T. tax might, in fact, serve an ecological function similar to that of eastern hemlock: providing evergreen shade along streams and streambeds within deciduous forests. Overall, the ecological interactivity (for good or ill) of T. tax in recipient ecosystems will become apparent only when test plantings in natural forest habitats to the north are carried out and monitored.

In North Carolina, there is already evidence that Florida torreya is both benign and thriving. In 1959, Chauncey Beadle collected about a dozen specimens of T. tax from the Apalachicola and planted them along a streamlet as part of a grove of open pine forest within the vast holdings of the Biltmore Gardens in Asheville (elevation 2200 feet). Interestingly, today, hemlock is prominent on the north-facing slope of this slight ravine, and all the *Torreya* specimens (including self-propagated saplings, probably planted by squirrels) occur and are thriving on the south-facing slope. As to *Torreya’s* cold-hardiness, Bill Alexander, forest historian at the Biltmore Gardens, reports that in the winter of 1985 all *Torreya* specimens survived unharmed an episode of unusual cold; temperatures plunged to minus 16°F Fahrenheit.

By assisting the migration of *Torreya taxifolia* now, we can help to shape a better next chapter for this beleaguered tree and, perhaps, many other plants.

Rewilding and deep time

Thus far, the arguments we have made in favor of assisted migration for *Torreya taxifolia* are grounded entirely in an ethic of biodiversity preservation. T. tax is in deep trouble in its historic native range, so let’s give it a chance to establish in cooler realms. Biodiversity preservation is not, however, the only environmental ethic that should guide conservation choices. Increasingly, “rewilding” (Soulé and Noss 1998, Barlow 1999, Foreman 2004) is a powerful motivator. According to this standard, a network of “potted orchards” of T. tax tended in northern botanical gardens, though a good hedge against out-right extinction, falls far short of the mark—potted is the botanical equivalent of caged.

Might it be possible for T. tax to take its place once again as a thriving member of some subset of Appalachian forest communities? We say again because we believe that northern Florida is more properly viewed not as native range for T. tax but as peak-glacial range. Helping T. tax establish in the southern Appalachians is thus not so much relocation for a plant struggling with global warming as repatriation of a once-native. It is a form of rewilding that uses a deep-time baseline for determining appropriate range.

Torreya is a member of the ancient gymnosperm family Taxaceae, whose ancestors were evolutionarily distinct from other conifers by the Jurassic, some 200 million years ago. Because *Torreya* pollen is indistinguishable from the pollen of yews (*Taxus*), bald cypress (*Taxodium*), and cypress (*Cupressus*), known fossil occurrences of this genus are limited to macro-fossils (seeds, leaves, and secondary wood), and these are sparse. There are no known Cenozoic fossils of *Torreya* in eastern North America. The most recent macrofossils identified as the genus *Torreya* in eastern North America are upper Cretaceous, and these were unearthed in North Carolina and Georgia—hence, our suggestion that assisting T. tax to rewild in North Carolina would be assisting the return of a deep-time native.

Near-time obstacles to natural migration

Torreya taxifolia is a glacial relict, left behind in its pocket reserve of rich soils and cool, moist microclimates afforded by ravines along the east shore of the Apalachicola River. The current richness of North America’s deciduous forests is, in large part, thanks to this and other glacial refugia—including the Tuscarora Hills of Louisiana and the Altamaha River of southeastern Georgia (Delcourt 2002). For some of the repatriated plants, relict populations still remain in one or more of these refugia, while the bulk of the range is disjunct much farther north—beech is a notable example. We infer that T. tax was unable to follow the other plant refuges north when the ice retreated, beginning some 15,000 years ago.

Consider that the last interglacial—110,000 to 140,000 years ago and preceded by many of other equal magnitudes—peaked at a global temperature not much different from that of today. If *Torreya* is having trouble surviving in northern Florida now, what might have stopped multiple interglacials? So what makes our own interglacial uniquely inhospitable for natural migration? There are two significant differences between this interglacial and the previous ones that could have posed grave problems for *Torreya*, and together they could have sealed the fate of this botanical refugee.

One difference is that our current interglacial is uniquely undersupplied in large herbivorous mammals, both in diversity and in population. By 10,000 B.P. most of the giant mammals had vanished, including mammoths, the giant ground sloths, and other mammals that powerfully affected vegetation had vanished. Notably, we lost all our big browsers. Small trees would have been left untopped by elephants; saplings and shrubs gone uneaten. Overall, the landscape would have become brushier, and thus more susceptible to fires reaching beyond the fire-adapted pinelands of the southeastern U.S. By 10,000 B.P., a second difference is that the fire-intolerant *Torreya* would have been edging north (Robinson 2003).

A second difference between this interglacial and the previous is that only in the current interglacial has North...
America been home to a creature that can make fire on demand. Indeed, the migration of humans into North America is evidently the cause of the coinciding loss of megafauna by overkill (Martin and Klein 1984). Near the onset of the present interglacial, the first paleoliths arrived. Both accidentally and intentionally, and for thousands of years, wildfires would have been ignited to favor plant species that provided food (the acorns of oaks), to make land easier and safer to cross, to flush out game, and to lure game animals to patches of abundant new growth. This scenario may partially account not only for the suppression of Torreya (and Florida yew) but also for the extinction of a recently described new species of spruce, Picea critchfieldii. Late Pleistocene extinctions of plants, to match the devastation suffered by large mammals, are otherwise unknown.

There is yet a third way in which humans might have stressed local populations of T. tax in near time. The dispersal agents upon which T. tax depended for movement of its large, fleshy seed—squads, and perhaps also tortoises—would likely have been severely reduced in numbers, even exterminated, as these creatures are attractive foods, safely and easily killed by people (Barlow 2001, Martin and Sauter 1999).

T. tax may thus have been a victim of contact, relegated to a short stretch of moist, riverine ravines by anthropogenic loss of big browsers, anthropogenic and natural fires, and anthropogenic extinctions of seed dispersers. If these are indeed the causes of T. tax’s troubles, then why have the other species of Torreya, the other species that did not have to move hundreds of kilometers north in order to keep pace with a warming climate? Rather, they shifted their ranges within hundreds of meters up and down slope of the Sierras, between 800 and 2000 meters; it is common enough that the wood is used for fencing and firewood. The spruce may all be attributed to the advent of the fire-makers (Martin, in press). Given the sequence of loss in their pocket reserves, it would seem that Critchfield spruce was the least heat- and drought-tolerant of the bunch, followed by Franklinia, which now thrives in cultivation in the mid-Atlantic states. Next comes T. tax, followed by Florida yew, which is not yet sickly in its Florida refuge but is doing a poor job of reproducing.

“Left behind in near time” may thus be a syndrome that applies to a number of extinct, imperiled, and soon-to-be-imperiled plants, and perhaps to small, isolated populations of species that are not themselves in danger of extinction. How might this awareness alter our conservation options as climate shifts? By assisting the migration of Torreya taxifolia now, we may help to shape a better next chapter for this beleaguered tree and, perhaps, many other plants.

Let’s get started

The first opportunity to begin collecting T. tax seed at the Biltmore Gardens of Asheville (supervised by the Biltmore’s Bill Alexander and local activist Lee Barnes) will be autumn 2003. Those who would volunteer their time, their students, their friends and resources, are encouraged to contact Mr. S. taxifolia—and thus to test the efficacy and pitfalls of the first intentional assisted migration of an imperiled plant in a warming world—are encouraged to visit www.torreyaguardians.org.

Connie Barlow is the author of three books, including *The Ghosts of Evolution*. Paul Martin, emeritus professor of geosciences at the University of Arizona in Tucson, is the author of many articles and books, including *Twilight of the Mammoths: What Caused the Extinctions of America’s Largest Mammals?* (forthcoming from the University of California Press).

ACKNOWLEDGMENTS

We wish to thank all those who informally discussed options for T. tax this past year through email exchange, especially Harri Delcourt, Peter White, Mark Schwartz, Anahlea Brooks, David Zarjen, Bill Alexander, Lee Barnes, Sean Simpkins, Rob Nicholson, Peter Wharton, Leigh Brooks, Brian Keel, John Johnson, Sharon Hermann, Paul Spitzer, Ron Deremer, and Carol Helton Denhof.

SOURCES CITED

Soulé, Michael and Reed Noss. 1998. *Rewilding and biodiversity as complements*.

Conservationists Should Not Move Torreya taxifolia

**So why, then, am I opposed to assisted migration for Florida torreya and other similar cases? One reason, unfortunately, is that the arguments about range and climate rely on very important assumptions that are not well justified. We usually do not have empirical data from which to judge whether narrowly distributed species are, as assumed, limit-
ed by climate and not other environmental factors, such as soils and disturbance regimes. As a consequence, I believe that we should exercise caution.

There is another, more important reason why assisted migration must be a management option of last resort. My logic is simple and based not on the biology of the target species, in this case Florida torreya, but on conservation concerns of the recipient ecosystem. Humanity has a long record of tinkering with natural ecosystems. Largely these have been successful from the perspective of the human endeavor—think agriculture. This tinkering, however, creates a series of ancillary non-target biological winners and losers. It has been argued that the majority of species introduced have had little effect on ecosystem structure, and most introductions do not cause undue ecological damage (Mack et al. 2000). Nevertheless, those few cases where introduced populations rapidly expand and threaten to endanger other species or damage ecosystems and ecosystem functions cost the U.S. billions of dollars each year (U.S. Congress 1993, Pimentel et al. 2000). As a consequence, I believe that conservationists should be very reticent about introducing species to novel environments as a conservation measure. Societal recognition of an appropriate reticence toward species introductions has been slow, but is emerging (Mack et al. 2000). If we are to now advocate species introductions on behalf of conservation, conservationists must have clear guidance as to when this action is warranted and when it is not. It is not an action to be taken lightly.

Assisted migration implies that we do not recognize the target species as native to the newly introduced locale. Local conservationists must then reconcile themselves as recipients of this novel species in their midst.

The likelihood of Torreya taxifolia expanding out of control is low. Florida torreya is a slow growing, shade-tolerant, dioecious tree that requires relatively large canopy gaps for successful recruitment. The species does not spread clonally and the relatively few seeds that trees produce are a favorite food of squirrels. The tree carries all of the attributes of a species that will not spread and become a noxious weed. Nevertheless, assisted migration sets a risky precedent. Will control assurances and monitoring of problems be followed for future species that are deemed to be in need of assisted migration? I fear not. Thus, it is critical that we take a hard look at what criteria are to be used to justify assisted migration and develop guidelines for appropriate assisted migration in order to preserve biological diversity.

I share with others the dedication to favoring the preservation of biodiversity over the preservation of historical examples of what we perceive as natural communities. But conservationists must also be reluctant to advocate ecological tinkering. I would advocate assisted migration for plants only when there is a clearly imminent extinction risk. Some believe the Florida torreya is such a case. There are probably fewer than 1000 individuals extant in the current distribution and the numbers are dwindling (Schwartz et al. 2000a). At last count, there is a single known individual that is producing seeds in the wild (personal observation). Aside from this one individual and the approximately eight seeds it has produced, there has been no observed seedling recruitment for at least 20, and probably 40, years. The situation, indeed, seems critical. Nevertheless, our population modeling suggests that the species has the probability of remaining extant for the next 50 years (Schwartz et al. 2000b). Further, there are no current disease symptoms that suggest that an augmentation of the population within its native distribution would not succeed. The germplasm currently housed in botanical gardens of the southeast could be used to augment natural populations. Local population augmentation of Florida torreya has not been adequately explored. All local options for conservation must be considered before attempting assisted migration. Florida torreya fails this simple criterion.

The reality of the situation, however, bears mentioning: anyone who wants to plant Florida torreya can do so—wherever they want. The ownership and movement of plants are very loosely regulated. The species is commercially available. From a strictly biological perspective, it seems likely that a range of people would say: Florida torreya has no place in southern Appalachian cove forests. As a consequence, assisted migration should, and will, result in rancor among conservationists. This rancor does not serve conservation.

Novel species becoming out of control is an issue of concern with assisted migration. An example of conservation tinkering gone awry comes from Newfoundland. Pine marten were not doing well, and it was thought that by augmenting their diet by introducing red squirrels, the population might do better. Red squirrels were introduced in 1963 (Benkman 1993). The squirrels and crossbills competed for black spruce cones as a primary food source. A by-product of the squirrel introduction was the dramatic decline and now presumed extinction of the Newfoundland sub-species of the red crossbill (Parchman and Benkman 2002). Well-conceived, conservation-minded introductions have unintended negative ecological consequences. Thus, we must be cautious in our enthusiasm to assist species that are in trouble.

The likelihood of Torreya taxifolia expanding out of control is low. Florida torreya is a slow growing, shade-tolerant, dioecious tree that requires relatively large canopy gaps for successful recruitment. The species does not spread clonally and the relatively few seeds that trees produce are a favorite food of squirrels. The tree carries all of the attributes of a species that will not spread and become a noxious weed. Nevertheless, assisted migration sets a risky precedent. Will control assurances and monitoring of problems be followed for future species that are deemed to be in need of assisted migration? I fear not. Thus, it is critical that we take a hard look at what criteria are to be used to justify assisted migration and develop guidelines for appropriate assisted migration in order to preserve biological diversity.

I share with others the dedication to favoring the preservation of biodiversity over the preservation of historical examples of what we perceive as natural communities. But conservationists must also be reluctant to advocate ecological tinkering. I would advocate assisted migration for plants only when there is a clearly imminent extinction risk. Some believe the Florida torreya is such a case. There are probably fewer than 1000 individuals extant in the current distribution and the numbers are dwindling (Schwartz et al. 2000a). At last count, there is a single known individual that is producing seeds in the wild (personal observation). Aside from this one individual and the approximately eight seeds it has produced, there has been no observed seedling recruitment for at least 20, and probably 40, years. The situation, indeed, seems critical. Nevertheless, our population modeling suggests that the species has the probability of remaining extant for the next 50 years (Schwartz et al. 2000b). Further, there are no current disease symptoms that suggest that an augmentation of the population within its native distribution would not succeed. The germplasm currently housed in botanical gardens of the southeast could be used to augment natural populations. Local population augmentation of Florida torreya has not been adequately explored. All local options for conservation must be considered before attempting assisted migration. Florida torreya fails this simple criterion.

The reality of the situation, however, bears mentioning: anyone who wants to plant Florida torreya can do so—whenever they want. The ownership and movement of plants are very loosely regulated. The species is commercially available. From a strictly biological perspective, it seems likely that a range of people would say: Florida torreya has no place in southern Appalachian cove forests. As a consequence, assisted migration should, and will, result in rancor among conservationists. This rancor does not serve conservation.

Novel species becoming out of control is an issue of concern with assisted migration. An example of conservation tinkering gone awry comes from Newfoundland. Pine marten were not doing well, and it was thought that by augmenting their diet by introducing red squirrels, the population might do better. Red squirrels were introduced in 1963 (Benkman 1993). The squirrels and crossbills competed for black spruce cones as a primary food source. A by-product of the squirrel introduction was the dramatic decline and now presumed extinction of the Newfoundland sub-species of the red crossbill (Parchman and Benkman 2002). Well-conceived, conservation-minded introductions have unintended negative ecological consequences. Thus, we must be cautious in our enthusiasm to assist species that are in trouble.

Well-conceived, conservation-minded introductions have unintended negative ecological consequences. Thus, we must be cautious in our enthusiasm to assist species that are in trouble.

SOURCES CITED

